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DISCRIMINATING AMONG COTTON CULTIVARS WITH

VARYING LEAF CHARACTERISTICS USING

HYPERSPECTRAL RADIOMETRY

H. Zhang,  L. L. Hinze,  Y. Lan,  J. K. Westbrook,  W. Clint Hoffmann

ABSTRACT. There is a rapidly growing interest in methods for automatic plant identification in agricultural research. Cotton
(Gossypium spp.) is a crop well‐suited to precision agriculture and its inherent goals of increasing yields while minimizing
environmental impacts. Ten cotton (G. hirsutum and G. barbadense) cultivars with differing leaf characteristics were
evaluated in a greenhouse environment. Hyperspectral data collected with a handheld spectroradiometer were used to
distinguish among the cultivars. The features extracted by principal component analysis and stepwise selection approaches
were used for discriminant analysis. The best discrimination accuracy by selected wavelengths was 90.4% for G. hirsutum
cultivars, 100% for G. barbadense cultivars, and 91.6% for pooled cultivars of the two species. Spectral wavelengths at 550
and 760 nm were most relevant to the discrimination between these two cotton species. Two vegetation indices, NDVI and
PRI, were also investigated for any significant differences across cotton cultivars. The results demonstrated that hyperspectral
radiometry has good potential for discrimination of G. hirsutum and G. barbadense cotton cultivars in early stages of growth.
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otton (Gossypium spp.) is a commercially culti‐
vated crop grown primarily for its fiber but also for
valuable products derived from its seed, including
cottonseed oil and cottonseed meal. The majority

of cotton grown is of either the G. hirsutum or the G. barba‐
dense species. G. hirsutum is the most common species of
cotton, accounting for approximately 90% of world produc‐
tion. G. barbadense, also known as Egyptian or Pima cotton,
is grown on a more limited scale and is recognized for its
high‐quality fiber (Hague et al., 2009).

Cotton is well‐suited to precision agriculture and its inher‐
ent goals of increasing yields while minimizing environmen‐
tal impacts (McKinion et al., 2001). Precision agriculture
applications using remote sensing have been steadily increas‐
ing in recent years. There has been a rapidly growing interest
in cost‐ and time‐effective methods for automatic identifica‐
tion of various crop types in precision agriculture (Rao et al.,
2007; Tyystjarvi et al., 2011). The ability to detect different
crop types at the species and cultivar level is important to en‐
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hance implementation of precision agriculture practices. Es‐
pecially in larger fields with hundreds of acres, several
cultivars are likely to be planted. Due to genetics and envi‐
ronment, each cultivar may vary in growth rate and yield po‐
tential.  Cultivars may also have different requirements for
inputs (fertilizer, insecticides, herbicides, etc.). Therefore,
being able to identify cultivars automatically would allow the
farmer to use precision agriculture practices to apply those
inputs needed by a specific cultivar at a specific time.

Hyperspectral remote sensing devices have enhanced the
spectral characterization of agricultural crops. Several stud‐
ies have used hyperspectral measurements in support of crop
management, such as crop type identification, plant nutrition
deficiency assessment, crop stress or damage, yield estima‐
tion, and growth status evaluation. Thenkabail et al. (2000)
used narrow‐band spectral data between 350 and 1050 nm to
determine appropriate bands for characterizing biophysical
variables of various crops, including corn, soybeans, and cot‐
ton. Hyperspectral reflectance data were analyzed with a va‐
riety of methods to differentiate the soybean crop from the
reflectance data of the soil and six weed species commonly
found in Mississippi agricultural fields (Gray et al., 2009).
The possibilities of hyperspectral remote sensing for the ex‐
traction of information relevant to agricultural crops demand
detailed understanding of spectral signatures in terms of posi‐
tion of feature specific absorption bands, shape of the
spectrum, spectral variability, and similarity of various types of
vegetative species (Rao et al., 2007). Rao et al. (2007) devel‐
oped a spectral library for identification and classification of
three cultivars each from rice, chili, and cotton using data from
Hyperion images and in situ hyperspectral measurements.

Spectral reflectance properties based on the absorption of
light at a specific wavelength are associated with specific
plant characteristics. Leaf pigments and tissues are known to
affect reflectance in different wavelengths. For healthy
crops, spectral reflectance in the visible wavelengths
(400‐700 nm) is low because of the high absorption of light en‐
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ergy by chlorophyll. In contrast, reflectance in the near‐infrared
(NIR) wavelengths (700‐1300 nm) is high because of the multi‐
ple light‐scattering mechanisms of different leaf tissues (Taiz
and Zeiger, 2006). Specifically, marked differences in reflec‐
tance of pigmented cotton leaves (green, dark red, and yellow‐
green) have been reported (Gausman, 1982). Leaf structures
such as trichomes, pubescence (hairs), and glaucousness
(thick wax layer) have been observed to have either minimal
or marked effects on spectral reflectance measurements in
different species (Holmes and Keiller, 2002, Sims and Ga‐
mon, 2002). Neither of these studies of leaf structures in‐
cluded Gossypium in the range of species evaluated.

The application of hyperspectral remote sensing data for
vegetation discrimination has been documented in several
studies (Goel et al., 2003; Karimi et al., 2005; Irisarri et al.,
2009). Many vegetation indices (VI) have been developed
from spectral data based on simple mathematical formulas,
such as ratios or differences between the reflectance at given
wavelengths. The normalized difference vegetative index
(NDVI) (Rouse et al., 1973) is a commonly used indicator of
crop health in agricultural applications (Sembiring et al.,
1998; Thenkabail et al., 2000; Zhao et al., 2005; Freeman et
al., 2007). The normalized difference vegetation index is cal‐
culated as: NDVI = (NIR – Red) / (NIR + Red), where Red
and NIR are the spectral reflectance measurements acquired
in the red and near‐infrared wavelengths, respectively. The
photochemical  reflectance index (PRI) is calculated as:
PRI�= (R531 ‐ R570) / (R531 + R570), where R531 and R570
are the reflectance values at the 531 nm and 570 nm wave‐
lengths, and was good at estimating photosynthetic radiation‐
use efficiency (Peñuelas et al., 1995).

The objectives of this study were to assess the potential of
using hyperspectral remote sensing data to identify G. hirsu‐
tum and G. barbadense cultivars in the presence of varying
leaf characteristics (pigmentation, pubescence, and gland‐
ing) and to determine the spectral wavelengths that were
most relevant to the discrimination at canopy level in a green‐
house environment.

MATERIALS AND METHODS
EXPERIMENTAL PLANTS

Ten cotton cultivars were grown in pots in two greenhouses.
In one greenhouse, five G. hirsutum cultivars were grown
(group 1). These cultivars included Paymaster Tejas (PMTejas,
a cultivated type with normal leaves), Paymaster HS26
(PMHS26, a cultivated type with normal leaves), Stoneville 506
(STV506, a cultivated type with normal leaves), TM‐1 (TM1,
the genetic standard for G. hirsutum with normal leaves), and
the cross albescent × Deridder Red (F4, an experimental type
with variegated white, green, and pink pigmented leaves). In a
second greenhouse, five G. barbadense cultivars were grown
(group 2). These cultivars included 3‐79 (3_79, the genetic stan‐
dard for G. barbadense with normal leaves), Pima S‐6 (PI‐
MAS6, a cultivated type with normal leaves), pilose (T1T1, a
mutant with soft silvery hair (pubescence) on leaves), red
(R1R1, a mutant with dark red pigmented leaves), and glandless
(GL3GL3, a mutant lacking the normal conspicuous black
glands on leaves). The cultivars presented a range of leaf pheno‐
types (pigment, pubescence, and glanding characteristics)
potentially affecting spectral reflectance measurements.

Three cultivars (PMTejas, PMHS26, and STV506) were
planted in pots in the greenhouse during fall 2008. The re‐

maining seven cultivars were “stumped” (cut back, dug up,
potted, and placed in the greenhouse) from plants growing in
the field during summer 2009. Plants already in the green‐
house were cut back at approximately the same time (mid‐
August) as stumped plants came into the greenhouse from the
field. Reflectance readings were taken at three broadly de‐
fined growth stages: flowering, boll development, and open
boll. Ideally, it takes approximately 50 days for a boll to
“open” after pollination occurs during flowering (Ritchie et
al., 2004). Cotton plants are indeterminate and continue to
grow and produce flowers until terminated. Readings were
taken when more than 50% of the plant was flowering, matur‐
ing bolls, or opening bolls to harvest. Even though there was
a range of cultivars, including some non‐commercial mutant
types, all cultivars met the minimum requirement for growth
stages when measured. Five plants per cultivar were mea‐
sured to have adequate replication within cultivars.

Both greenhouses were set up for similar environmental con‐
ditions. The experiments were maintained at 27°C/21°C day/
night temperature regimes with no supplemental light except for
solar light. Automatic fertigation was used to apply fertilizer
through a drip irrigation system. Fourteen parts per million of
nitrogen (ppm N) from a 15‐16‐17 (nitrogen‐phosphorous‐
potassium) fertilizer formulation was applied to the plants
through the irrigation system. Approximately one‐third of a gal‐
lon of the fertilizer solution was applied to each pot once a day.

DATA ACQUISITION
All spectral measurements were collected between 13:00

and 14:00 h on cloud‐free days to avoid the influence of illumi‐
nation changes on the spectral responses. Within each green‐
house, the plants were moved to a uniform setting for
measurements. The five cotton cultivars in each greenhouse
were analyzed separately for spectral characteristics. For each
plant, spectra readings were collected from five different upper‐
layer leaves using a FieldSpec handheld spectroradiometer
(Analytical Spectral Devices, Inc., Boulder, Colo.). Table 1
gives the sampling protocol for the two groups of cotton
cultivars. The FieldSpec spectroradiometer measures radiation
at wavelengths ranging from 325 to 1075 nm with a sampling
interval of 1.6 nm and an angular field‐of‐view of 25°. Since the
reflectance property of the crop canopy is affected by the spa‐
tial distribution of vegetated and non‐vegetated areas, the
spectroradiometer  was placed at a height of approximately 10
cm with a nadir‐looking view above the surfaces of upper lay‐
er leaves to reduce the non‐vegetated area that the sensor
might view. The effects of the orientation of the leaves were
ignored. The instrument optimization and white reference
measurements were performed prior to each measurement
according to Castro‐Esau et al. (2006). The white reference
was collected with a Spectralon white panel until a straight
100% reflectance line appeared. Spectral reflectance data were
exported into a spreadsheet for further analyses.

DATA ANALYSIS

Reduction of spectral data dimension and smoothing of
the spectral data were performed to allow rapid computer
analysis and avoid noise associated with specific bands. The
moving average method was used to smooth the original spec‐
trum to reduce the random noise induced by the instrument in‐
ternal factors, and then the pretreated spectrum was normalized
by the maximum reflectance value of each spectrum. The
normalized reflectance values were averaged to fifty 10 nm wa‐
vebands with an effective working region of 400 to 900 nm.
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Table 1. Protocol for sampling two groups of cotton
cultivars with a FieldSpec handheld spectroradiometer.

Sampling Date Cotton Growth Stage

No. of Samples

Group 1 Group 2

16 Nov. 2009 Flowering 125 125
16 Dec. 2009 Boll development 125 125
10 Jan. 2010 Open boll 125 125

The final spectral reflectance values at each of the 10 nm wa‐
vebands were then analyzed with two techniques for feature ex‐
traction: principal component analysis (PCA) and stepwise
selection. PCA is a multivariate technique used as a tool for re‐
ducing multidimensional data. The variance contained in the
original variables was projected onto a smaller number of prin‐
cipal components (PCs), which are linear combinations of those
variables. The PCs that explained more than 1% of the variance
were selected as the inputs for discriminant analysis. PCA was
performed using the PRINCOMP procedure in SAS (SAS Insti‐
tute, Inc., Cary, N.C.) in which a new principal component was
created for each wavelength variable in the original data. The
stepwise selection of the STEPDISC procedure in SAS was
used to select the wavelengths that were most likely to be as‐
sociated with the differences in the reflectance data of differ‐
ent cotton cultivars. When given a group of variables, this
procedure reduced the data set to those variables that maxi‐
mized between‐group variability while minimizing within‐
group variability. F‐tests were conducted to differentiate
between groups with variables that were significant.

After the principal components and wavelengths were se‐
lected, their discriminant capability was analyzed using the
DISCRIM procedure in SAS. The pooled covariance matrix
and prior probability parameters were used to develop the
discriminant function. The DISCRIM procedure divided the
data into two subsets. One subset was used to develop the
calibration model, and the other was used to validate the
model. The “leave‐one‐out” method was used for cross‐
validation in this procedure. The output matrix provided the
misclassification  rate of calibration and cross‐validation.

Analysis of variance (ANOVA) tests were performed using
the GLM procedure in SAS on the VIs calculated with spectral
data to detect significant differences in VIs across cotton culti‐
vars. Duncan's multiple range tests were used for multiple com‐
parisons between the VIs of cultivars. The reflectance values at
the 680 nm and 800 nm wavelengths were used to calculate the
NDVI (Castro‐Esau et al., 2006). The reflectance values at the
530 nm and 570 nm wavelengths were used to calculate the PRI.

RESULTS AND DISCUSSION
NORMALIZED REFLECTANCE SPECTRA

The average normalized reflectance spectra taken on
16�November 2009 are shown in figure 1 for the G. hirsutum
cotton cultivars (PMTejas, PMHS26, STV506, TM1, and F4)
and in figure 2 for the G. barbadense cotton cultivars (3_79,
PIMAS6, T1T1, R1R1, and GL3GL3). The differences
among the spectra of various cultivars could be seen clearly
in the visible regions (400‐700 nm). The reflectance spectra
show light absorption between 400 to 500 nm and 660 to
680�nm, with a peak around 550 nm. Most of these spectra
differences were caused by absorption of blue and red light
and reflection of green light. The reflectance values of F4 and
R1R1 in the green region were substantially lower than others
since their leaves were not green. F4 had variegated white,

green, and pink pigmented leaves, while R1R1 leaves had
dark red pigmentation due to higher levels of anthocyanins.
The increased pubescence of T1T1 also caused a notable dif‐
ference in the reflectance spectra. The higher reflectance val‐
ues for T1T1 at 680 nm correspond with the higher reflec-
tance values observed for hairy versus hairless leaves as mea‐
sured in Campanula elationides and Kalanchoe tomentosa
(Holmes and Keiller, 2002).

FEATURE EXTRACTION
PCA procedures were carried out to reduce the fifty 10 nm

average wavelengths into a few principal components. The
first three or four principal components (PC1 to PC4)
explained more than 98% of the variability for all cotton
groups. Figure 3 shows loadings for the first four principal
components from PCA for group 1 and 2 sampled on 16 No-
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Figure 1. Average normalized reflectance spectra taken on 16 November
2009 of G. hirsutum cotton cultivars (group 1): PMTejas, PMHS26,
STV506, TM1 and F4.
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Figure 2. Average normalized reflectance spectra taken on 16 November
2009 of G. barbadense cotton cultivars (group 2): 3_79, PIMAS6, T1T1,
R1R1 and GL3GL3.

Figure 3. The first four principal component loadings from PCA for
groups 1 and 2 sampled on 16 November 2009.
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Table 2. Selected wavelengths, listed in order of significance, as determined by the STEPDISC procedure for each classification group and sampling date.
Cotton Group Sampling Date Wavelengths (nm)

1 16 November 2009 760, 750, 730, 550, 520, 400, 810, 650, 530, 560
16 December 2009 810, 770, 780, 830, 760, 550, 580, 530, 430, 720

10 January 2010 660, 720, 800, 710, 740, 760, 550, 520, 570, 810, 850

2 16 November 2009 870, 550, 560, 760, 750, 770, 810, 530, 880, 520
16 December 2009 860, 830, 550, 590, 580, 400, 720, 620, 530, 810

10 January 2010 890, 870, 760, 810, 780, 860, 840, 730, 550, 710, 530, 750

1 and 2 16 November 2009 550, 570, 830, 840, 890, 750, 760, 740, 720, 710
16 December 2009 830, 860, 550, 580, 760, 880, 800, 890, 770, 780, 500, 570

10 January 2010 820, 840, 730, 640, 760, 550, 590, 710, 860, 650

vember 2009. PC1 was mostly dominated by larger‐mag-
nitude positive loadings around the 550 and 710 nm wave‐
lengths; PC2 had larger‐magnitude positive loadings in the
red region (600‐ 700�nm) and larger negative loadings around
550 nm; PC3 was primarily dominated by larger‐magnitude
positive loadings in the blue region and negative loading
around 710�nm; and PC4 had larger‐magnitude positive load‐
ings in the NIR region around 740 nm. Thenkabail et al.
(2004) reported that the first five PCs provide the highest fac‐
tor loadings for classification of crops and weeds. Thenkabail
et al. (2004) also documented that PC2 was dominated by the
red region for crops and weeds, similar to the results observed
in the present study.

The STEPDISC procedures were applied to three classifica‐
tion problems: G. hirsutum cotton cultivars, G. barbadense cot‐
ton cultivars, and pooled cultivars. Given 50 wavelengths as
variables for each classification problem, the STEPDISC proce‐
dure performed a stepwise discriminant analysis to select a sub‐
set of wavelengths that contributed most to the discrimination.
The selected wavelengths, listed in order of significance as de‐
termined using the STEPDISC procedure, are given in table 2.
The selected wavelengths for the G. hirsutum cotton culti‐
vars, G. barbadense cotton cultivars, and pooled cultivars
were assessed for their frequency of occurrence. The highest
frequency of occurrence was found for 550, 760, and 810 nm
for the G. hirsutum cultivars; 530, 550, and 810 nm for the G.
barbadense cultivars; and 550 and 760�nm for the pooled cul‐
tivars. The wavelengths found in all data sets covered the
green region (520‐560 nm), red region (620‐650 nm), red‐
edge region (710‐750 nm), and NIR region (760, 770, 800,
and 810 nm) of the reflectance spectrum.

DISCRIMINANT ANALYSIS

The DISCRIM models were applied to the different numbers
of wavelengths observed in each group and sampling date based
on their order of entry in the stepwise procedure. A summary of
the calibration and cross‐validation classifications for a set of
principal components by PCA is given in table 3, and a summa‐
ry for the selected wavelengths from the STEPDISC procedure
is shown in table 4. Higher classification accuracy, as deter-
mined by lower misclassification rates for cross‐validation, was
acquired when using the selected wavelengths rather than the
principal components. In the case of discriminating the G. hirsu‐
tum cotton cultivars, the best results were obtained by using 9,
10, and 11 wavelengths at each subsequent sampling date, with
an accuracy of 90.4%, 89.6%, and 76.8%, respectively. For the
G. barbadense cotton cultivars, 7, 10 and 10 wavelengths were
used to obtain an accuracy of 100%, 98.4%, and 92.4%, respec‐
tively. For the pooled cultivars, 10, 12, and 10 wavelengths were
used to obtain an accuracy of 91.6%, 90%, and 74.4%,
respectively, at each sampling date.

Table 3. Summary of misclassification matrices obtained from the
DISCRIM procedure using the set of principal components from PCA.

Sampling Date
No. of
PCs

Explained
Variance

(%)

Percent Misclassified

Calibration
Cross‐

Validation

Cotton group 1
16 Nov. 2009 4 99 26.4 35.2
16 Dec. 2009 4 98.5 20 25.6
10 Jan. 2010 4 98.8 27.2 40

Cotton group 2
16 Nov. 2009 3 99 14.4 18.4
16 Dec. 2009 4 99 2.4 5.6
10 Jan. 2010 4 98.7 21.6 31.2

Cotton groups 1 and 2
16 Nov. 2009 3 98.6 32.4 40
16 Dec. 2009 4 98.7 14 20.4
10 Jan. 2010 4 98.3 41.2 50.8

Table 4. Summary of misclassification matrices obtained from
the DISCRIM procedure using selected wavelengths

as determined using the STEPDISC procedure.

Sampling Date
No. of

Wavelengths

Percent Misclassified

Calibration Cross‐Validation

Cotton group 1
16 Nov. 2009 9 0 9.6
16 Dec. 2009 10 0 10.4
10 Jan. 2010 11 0 23.2

Cotton group 2
16 Nov. 2009 7 0 0
16 Dec. 2009 10 0 1.6
10 Jan. 2010 10 4 7.6

Cotton groups 1 and 2
16 Nov. 2009 10 0 8.4
16 Dec. 2009 12 0 10
10 Jan. 2010 10 1.6 25.6

The best misclassification matrices for cross‐validation us‐
ing the selected wavelengths from the STEPDISC procedure are
given in table 5 for the G. hirsutum cotton cultivars, G. barba‐
dense cotton cultivars, and pooled cultivars. The values in the
table provide the number of correctly classified cases (values on
the diagonal) and misclassified cases (values above or below the
diagonal) for the three classification problems. The three best
results are shown, and they were from the data sets taken on 16
November 2009, when the cotton plants were in their flowering
stage of growth. These results indicate that hyperspectral radi‐
ometry has good potential for discrimination of the G. hirsutum
and G. barbadense cotton cultivars at an early stage of growth.

VEGETATION INDICES

Cultivars had a significant effect on NDVI and PRI for
both cotton species at all growth stages. Table 6 presents the
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Table 5. Misclassification matrices of cross‐validation data for G. hirsutum, G. barbadense, and
pooled cotton cultivars from reflectance spectra obtained during flowering (16 November 2009).

From
Cultivar

Classified as

TotalF4 PMHS26 PMTejas STV506 TM1

G. hirsutum F4 25 0 0 0 0 25
PMHS26 0 21 2 1 1 25
PMTejas 0 0 25 0 0 25
STV506 0 0 0 25 0 25

TM1 0 0 0 0 25 25

Total 25 21 27 26 26 125

From
Cultivar

Classified as

Total3_79 GL3GL3 PIMAS6 R1R1 T1T1

G. barbadense 3_79 25 0 0 0 0 25
GL3GL3 0 25 0 0 0 25
PIMAS6 0 0 25 0 0 25

R1R1 0 0 0 25 0 25
T1T1 0 0 0 0 25 25

Total 25 25 25 25 25 125

From
Cultivar

Classified as

TotalPMTejas R1R1 STV506 T1T1 TM1 3_79 F4 GL3GL3 PIMAS6 PMHS26

Pooled cultivars PMTejas 24 0 1 0 0 0 0 0 0 0 25
R1R1 0 25 0 0 0 0 0 0 0 0 25

STV506 0 0 22 0 3 0 0 0 0 0 25
T1T1 0 0 0 25 0 0 0 0 0 0 25
TM1 0 0 1 0 24 0 0 0 0 0 25
3_79 0 0 0 0 0 25 0 0 0 0 25

F4 0 0 0 0 0 0 25 0 0 0 25
GL3GL3 0 0 0 0 0 0 0 25 0 0 25
PIMAS6 0 0 0 0 0 2 0 0 23 0 25
PMHS26 2 0 0 0 4 0 0 0 0 19 25

Total 26 25 24 25 31 27 25 25 23 19 250

Table 6. Means and significant differences from an ANOVA test on two VIs for ten cotton cultivars (p < 0.05).[a]

Sampling Date

G. hirsutum G. barbadense

Cultivar NDVI PRI Cultivar NDVI PRI

16 November 2009 PMTejas 0.877 b ‐0.016 b 3_79 0.847 b ‐0.006 b
PMHS26 0.921 ab ‐0.032 cd PIMAS6 0.932 a ‐0.017 c
STV506 0.924 a ‐0.021 bc T1T1 0.785 c ‐0.008 b

TM1 0.9 ab ‐0.039 d R1R1 0.849 b 0.082 a
F4 0.877 b 0.072 a GL3GL3 0.9 a ‐0.04 d

16 December 2009 PMTejas 0.89 a ‐0.045 bc 3_79 0.877 ab ‐0.039 b
PMHS26 0.863 abc ‐0.053 c PIMAS6 0.882 a ‐0.035 b
STV506 0.871 abc ‐0.051 bc T1T1 0.871 ab ‐0.038 b

TM1 0.886 ab ‐0.037 b R1R1 0.873 ab 0.012 a
F4 0.85 c 0.045 a GL3GL3 0.854 b ‐0.04 b

10 January 2010 PMTejas 0.87 a ‐0.039 b 3_79 0.901 a ‐0.055 c
PMHS26 0.89 a ‐0.05 b PIMAS6 0.892 a ‐0.04 b
STV506 0.892 a ‐0.04 b T1T1 0.851 b ‐0.045 b

TM1 0.892 a ‐0.05 b R1R1 0.897 a ‐0.025 a
F4 0.65 b 0.11 a GL3GL3 0.839 b ‐0.04 b

[a] Within a column, means followed by different letters are significantly different at p = 0.05 according to Duncan's t‐test.

differences among means using Duncan's multiple range
tests for the VIs. Among the G. hirsutum cultivars, the culti‐
var F4 had the lowest NDVI and highest and only positive
values for PRI on each sampling date. Healthy plants have a
high NDVI value because of their high reflectance of infrared
light and relatively low reflectance of red light. The varie‐
gated white, green, and pink leaves of the F4 cultivar may be
interpreted in the VIs as reduced vigor since healthy plants
generally have green leaves. At the flowering stage, there
were more significant differences in PRI values among the

five cultivars. The PRI index is a measure of photosynthetic
efficiency. When photosynthesis is most effective (low light
intensities), PRI has a high value, while at high light intensi‐
ties (excess light), PRI has a low (negative) value (Barton and
North, 2001). All G. hirsutum cultivars were grown in the
same greenhouse; therefore, light intensity was consistent
across these cultivars. The high PRI values for cultivar F4
would indicate that this cultivar made the most effective use
of available light and had the most photosynthetic activity. At
the harvest stage, only the VIs of cultivar F4 were significant‐
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ly different from the other four cultivars, while the VIs of the
other four cultivars showed no differences. The VIs at the
flowering stage were generally higher than those at the boll
development and the harvest stages.

Considerable leaf variability was observed among the
G.�barbadense cultivars: the leaves of cultivars 3_79 and PI‐
MAS6 had normal green pigment, T1T1 had green pigment
with silvery color due to pubescence, R1R1 had red pig‐
mentation,  and the leaves of GL3GL3 were normally pig‐
mented but lacking the conspicuous black glands seen on
3_79 and PIMAS6. Having the same normal green pigment
leaf phenotype, cultivars 3_79 and PIMAS6 are expected not
to differ. However, they do differ in NDVI during flowering
and in PRI values during the open boll stage. Similar to the
G. hirsutum cultivars, most differences among cultivars for
NDVI and PRI were seen in the flowering stage. During the
flowering and open boll stages, PRI was better able to discrimi‐
nate among cultivars than NDVI. The red leaves of R1R1 pro‐
vided the greatest discrimination and the highest PRI values
across all three growth stages. The PRI values of cultivar
GL3GL3 did not change throughout the growing stages.

CONCLUSIONS
From this research, we can conclude that spectral wave‐

lengths at 550 and 760 nm were most relevant to the discrimina‐
tion among cotton cultivars of G. hirsutum and G.�barbadense
with unique leaf characteristics. Fifty wavelengths were re‐
duced to the first four PCs. The best discrimination accuracy by
PCs across sampling dates was 74.4%, 94.4%, and 79.6% for
the G. hirsutum, G. barbadense, and pooled cultivars, respec‐
tively. The best discrimination accuracy by a total of 10 to 12
selected wavelengths by stepwise discriminant analysis across
sampling dates was 90.4%, 100%, and 91.6% for the G. hirsu‐
tum, G. barbadense, and pooled cultivars, respectively. The re‐
sults of ANOVA tests on VIs showed that neither NDVI nor PRI
could be used effectively to distinguish among all cotton culti‐
vars. These indices were best able to detect differences among
cultivars during flowering. PRI could be used to separate cotton
cultivar F4 from other cultivars in the G. hirsutum group and to
distinguish cultivar R1R1 in the G. barbadense group during all
stages of growth. These results show that hyperspectral radiom‐
etry has good potential for discrimination of the G. hirsutum and
G. barbadense cotton cultivars at the early stage of growth.
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